Optimal set of grid size and angular increment for practical dose calculation using the dynamic conformal arc technique: a systematic evaluation of the dosimetric effects in lung stereotactic body radiation therapy

نویسندگان

  • Ji-Yeon Park
  • Siyong Kim
  • Hae-Jin Park
  • Jeong-Woo Lee
  • Yeon-Sil Kim
  • Tae-Suk Suh
چکیده

PURPOSE To recommend the optimal plan parameter set of grid size and angular increment for dose calculations in treatment planning for lung stereotactic body radiation therapy (SBRT) using dynamic conformal arc therapy (DCAT) considering both accuracy and computational efficiency. MATERIALS AND METHODS Dose variations with varying grid sizes (2, 3, and 4 mm) and angular increments (2°, 4°, 6°, and 10°) were analyzed in a thorax phantom for 3 spherical target volumes and in 9 patient cases. A 2-mm grid size and 2° angular increment are assumed sufficient to serve as reference values. The dosimetric effect was evaluated using dose-volume histograms, monitor units (MUs), and dose to organs at risk (OARs) for a definite volume corresponding to the dose-volume constraint in lung SBRT. The times required for dose calculations using each parameter set were compared for clinical practicality. RESULTS Larger grid sizes caused a dose increase to the structures and required higher MUs to achieve the target coverage. The discrete beam arrangements at each angular increment led to over- and under-estimated OARs doses due to the undulating dose distribution. When a 2° angular increment was used in both studies, a 4-mm grid size changed the dose variation by up to 3-4% (50 cGy) for the heart and the spinal cord, while a 3-mm grid size produced a dose difference of <1% (12 cGy) in all tested OARs. When a 3-mm grid size was employed, angular increments of 6° and 10° caused maximum dose variations of 3% (23 cGy) and 10% (61 cGy) in the spinal cord, respectively, while a 4° increment resulted in a dose difference of <1% (8 cGy) in all cases except for that of one patient. The 3-mm grid size and 4° angular increment enabled a 78% savings in computation time without making any critical sacrifices to dose accuracy. CONCLUSIONS A parameter set with a 3-mm grid size and a 4° angular increment is found to be appropriate for predicting patient dose distributions with a dose difference below 1% while reducing the computation time by more than half for lung SBRT using DCAT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy

Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...

متن کامل

Evaluation of dosimetric characteristics of a grid block fabricated for Mega-voltage grid therapy purposes

Background: In conventional radiation therapy, regarding normal tissue tolerance, the treatment of bulk tumors is one of the remaining challenges. Grid Radiation Therapy (GRT) is a technique to deliver high doses, approximately 15 – 20 Gy per fraction, to several small volumes located in a large radiation field. This can be performed using a grid block. The current work has concentrate...

متن کامل

A dosimetric comparison of three‐dimensional conformal radiotherapy, volumetric‐modulated arc therapy, and dynamic conformal arc therapy in the treatment of non‐small cell lung cancer using stereotactic body radiotherapy

This study evaluates three-dimensional conformal radiotherapy (3D CRT), volumetric-modulated arc therapy (VMAT), and dynamic conformal arc therapy (DCAT) planning techniques using dosimetric indices from Radiation Therapy Oncology Group (RTOG) protocols 0236, 0813, and 0915 for the treatment of early-stage non-small cell lung cancer (NSCLC) using stereotactic body radiotherapy (SBRT). Twenty-fi...

متن کامل

Optimization of tangential fields arrangement in the breast cancer 3D conformal radiation therapy

Introduction: The incidence of breast cancer increases with the rate of 1-2% at the world. Radiation therapy is one of the available choices for breast cancer treatment. The single isocentre half-beam block technique is considered as a standard technique to avoid hot and cold spots within the PTV. The major advantage of half beam technique is that the both contralateral breast...

متن کامل

Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans

INTRODUCTION The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. METHODS The dosimetric impact of using AAA instead of AXB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014